Adaptive Image Quality Improvement with Bayesian Classification for In-line Monitoring

نویسندگان

  • Shuo Yan
  • Stephen T. Balke
  • Saed Sayad
چکیده

Development of an automated method for classifying digital images using a combination of image quality modification and Bayesian classification is the subject of this thesis. The specific example is classification of images obtained by monitoring molten plastic in an extruder. These images were to be classified into two groups: the “with particle” (WP) group which showed contaminant particles and the “without particle” (WO) group which did not. Previous work effected the classification using only an adaptive Bayesian model. This work combines adaptive image quality modification with the adaptive Bayesian model. The first objective was to develop an off-line automated method for determining how to modify each individual raw image to obtain the quality required for improved classification results. This was done in a very novel way by defining image

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the quality of ultrasound images using Bayesian estimators

Medical ultrasound imaging due to close behavior of cancer tumors to body tissues has a low contrast. This problem with synthetic aperture imaging method has been addressed. Although the synthetic aperture imaging technique solved the low-contrast problem of ultrasound images, to an acceptable limit, but the performance of these methods is not even acceptable when the signal to noise ratio (SNR...

متن کامل

An adaptive Bayesian classification for real-time image analysis in real-time particle monitoring for polymer film manufacturing

Contaminant particles in molten plastic flowing through processing equipment result in very undesirable defects in manufactured film. Images of these particles can now be obtained in-line during processing. A Bayesian classification model was previously shown to be capable of distinguishing images containing a contaminant particle from those that did not [1]. However, new processing conditions ...

متن کامل

A Bayesian approach for image denoising in MRI

Magnetic Resonance Imaging (MRI) is a notable medical imaging technique that is based on Nuclear Magnetic Resonance (NMR). MRI is a safe imaging method with high contrast between soft tissues, which made it the most popular imaging technique in clinical applications. MR Imagechr('39')s visual quality plays a vital role in medical diagnostics that can be severely corrupted by existing noise duri...

متن کامل

An Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising

MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...

متن کامل

Palarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm

Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007